
● @masonegger

● mason.dev

Write Docs Devs Love
Ten Tricks to Level Up Your Tech Writing

Mason Egger

Lead Developer Advocate

Gretel

https://gretel.ai

https://twitter.com/masonegger
https://mason.dev
https://gretel.ai/


What is Tech Writing?

○ Think of that feeling you get when you follow an online 

tutorial or piece of documentation and the code works 

on the first run.

○ Now think of all the hours spent wasted following 

broken, outdated, or incomplete documentation.

○ What is the difference? What made one good and the 

other bad?

○ Technical Writing is instructional or informative writing 

that focuses on how to accomplish a task using a 

specific tool
○ These tools can be hardware, software, and everywhere in 

between

@masonegger - Write Docs Devs Love



Why is Technical Writing Important?

○ Usually the first impression someone has of your project
○ If they don’t like it, they will leave and find another tool

○ Teaches users about a new project/code they didn’t know 

about
○ When was the last time you found a new project just browsing 

source code? 
■ A projects README is tech writing, so don’t count that.

○ Teaches users how to use your project effectively and 

safely
○ Imagine if your vehicle manual said “Fill up the tire with air” instead 

of “Fill up the tire with air to 35 psi”

○ Helps build a community around your project
○ Likely to bring people back

○ People will want to contribute

○ People will tell their friends about the project

@masonegger - Write Docs Devs Love



Mason’s Top 10 Trips for Improving 

○ Disclaimer: These are my Tips and Tricks
○ This is what has helped me after spending two years writing 

tutorials and working with professional editors at DigitalOcean

○ Just because something didn’t make it on this list doesn’t make it 

invalid

○ Picking just 10 was tough

@masonegger - Write Docs Devs Love



Tip #10 - Make Your End Goal Clear

○ Have a clear, concise goal in your documentation in the 

first paragraph
○ This library allows you to do X

○ In this tutorial you’ll use X and Y to build Z

○ If you’re writing a tutorial, don’t spend 1000 words telling 

your reader how great the technology is.
○ They already know this, that’s why they are reading your tutorial.

○ The reader wants to get something done

○ Make it blatantly obvious what your reader will have 

learned, built, accomplished, understood, etc. by the end 

of reading the documentation

@masonegger - Write Docs Devs Love



Tip #9 - Don’t Be Overly Verbose

○ Technical documentation should be concise, not a novel
○ If you want to write a tech novel, go for it. They are hilarious

○ SAT words are not needed here
○ Always assume the readers of your documentation don’t speak 

the same language as you

○ Aim for a low reading level
○ Tools like Grammerly and https://hemingwayapp.com/ will give 

you the estimated grade level readability of your writing

■ I aim for 3rd grade reading level. The highest I allow myself 

to go is 6th

@masonegger - Write Docs Devs Love

https://hemingwayapp.com/


Tip #8 - Use Inclusive Language

○ Avoid gendered language and go for more gender 

neutral pronouns.
○ Don’t be afraid to use second person.

■ “Next you will ….”

○ If you’re looking for second person plural, I love the word y’all

○ Avoid using known internet slang that can be viewed as 

derogatory
○ Noobs, 10x Developers, Dummies

■ “Top 10 Tips for JavaScript Noobs”

○ Avoid words that can make someone question or doubt 

their skills
○ What is “simple” or “easy” to someone might be challenging to 

someone else

■ “Simply install Python from source”

@masonegger - Write Docs Devs Love



Tip #7 - Limit Technical Jargon

○ Jargon - special words or expressions that are used by 

a particular profession or group and are difficult for 

others to understand.

○ Overuse of Jargon can make it difficult for beginners to 

grok your content
○ See what I did there? Grok?

○ Knowing your audience will help you decide how much 

jargon you can use
○ Are you writing internal documentation for your team? Probably 

can use some jargon related to the system

○ Assume beginners if you don’t know your audience
○ Beginners will appreciate you and experts will skim over it

○ You can also have a statement stating who your documentation is 

for
@masonegger - Write Docs Devs Love



Tip #6 - Define ALL Acronyms

○ Tech has way too many acronyms
○ We even have some acronyms that can mean two different things

○ Acronyms can easily scare away readers
○ New learners often feel insecure and intimidated by Tech

■ Acronyms feed this fear

○ Write out the full name of the acronym when you first 

introduce it
○ “You’ll need to add a record to the Domain Name System, DNS, to …”

○ If you plan to use the acronym for the rest of the 

documentation, say so
○ “You’ll need to add a record to the Domain Name System, DNS, to … We’ll 

refer to the Domain Name System as DNS for the remainder of this tutorial”

○ Define all acronyms used in the tutorial at the beginning 

or end and link back to them when you use them

@masonegger - Write Docs Devs Love



Tip #5 - Avoid Memes/Idioms and Regional 
Language
○ Avoid using memes and idioms unless you are positive 

who your audience is
○ Idioms - a group of words established by usage as having a 

meaning not deducible from those of the individual words

■ “Pull out all the stops”

■ “Piece of cake”

■ “Costs and arm and a leg”

○ Your 6 coworkers will probably understand these, a global 

audience of people who might have never seen Spongebob 

might not

○ Avoid using regional language that might confuse native 

and non-native speakers
○ “Performing this command will totally trash your system”

○ “Don’t use this library, it’s dodgy”

@masonegger - Write Docs Devs Love



Tip #4 - Use Meaningful Code Samples and 
Variable Names
○ Use examples of real problems your code can solve

○ Readers want to know what problems your code solves, show them

○ Very often readers just skip to code, if you have good examples they 

may get their entire answer from a single code block

○ Use meaningful variable names
○ We all say “Code should be self documenting”, well the documentation 

should be as well

○ Foo and Bar are useless. They need to go

○ Include everything that is needed to run the code
○ This includes things like import statements

○ Always have a completed copy of the code for copy/pasting
○ If you have a tutorial where you walk the user step by step with little 

code blocks, have one large codeblock at the end with the completed 

code

@masonegger - Write Docs Devs Love



Tip #3 - Don’t Make Your Reader Leave 
Your Docs
○ Avoid sending your reader to many other sites/links

○ Everything necessary to complete task should be in your article

○ Copying a few steps from another set of documentation is better 

than sending the user to many different sites

○ If you are going to make your reader leave your article, 

have a reason and a way to bring them back
○ Do it at the beginning

○ Have a list of prerequisites at the very beginning that need to be 

completed before doing the tutorial.

○ Link out to these and direct the reader where to learn/accomplish the 

prerequisite

○ Don’t just say “Go install Python”. Give them a tutorial that sets them 

up for success and tell them to come back when they have finished

■ This also allows you to control and write for that specific 

environment

@masonegger - Write Docs Devs Love



Tip #2 - Make Your Content Scannable

○ Make it easy for the reader to find a single piece of 

information
○ Beginners tend to read entire posts while experienced users will 

scan for the information that they need

○ Use Headings and SubHeadings to break up content
○ Outline big changes such as a next step or change of context

○ When paired with a Table of Contents it lets users find what they 

are looking for much easier

○ Use consistent style when writing
○ Ex: Make all library names bold and all file paths in italics

○ The user will quickly pick up on this style and it will make the 

content more scannable

○ Consistency is key!

@masonegger - Write Docs Devs Love



Tip #1 - Verify Your Instructions! Test, Test, 
Test!
○ Always verify your instructions and test your work

○ The only thing worse than no documentation is incorrect 

documentation

○ If possible, someone else test your work also
○ Having and editor, peer, teammate, or friend work through the 

documentation can help you find lapses

○ Use a fresh environment for your testing
○ Attempt to remove all bias from your development environment. 

Your shortcuts, packages, and tools might not be on your readers 

workstation

@masonegger - Write Docs Devs Love



Bonus Tip! - Practice, Practice, Practice

○ The best way to get better at technical writing is to write

○ Set aside a set amount of time daily/weekly to just write
○ You don’t have to publish it.

○ Don’t throw it away. Save it in a folder. You never know when you 

might want to dust it off

@masonegger - Write Docs Devs Love



How You Can Get Started in Technical 
Writing
○ Write documentation at work

○ There is always something to be documented

○ Start a blog
○ The best part about a blog is it can be freer. You can write 

tutorials and blog posts

○ Great for practicing

○ Contribute to Open Source Projects
○ Many Open Source Projects need help with documentation

○ Hacktoberfest is a great place to start

■ It’s where I started

@masonegger - Write Docs Devs Love



That’s all for this time!

○ Follow me on Twitter @masonegger

○ Scan the barcode or go to grtl.ai/europython2022 for 

some free swag!

○ Slides can be found on my website 

mason.dev/speaking/docs-devs-love

https://twitter.com/masonegger
https://grtl.ai/europython2022
https://mason.dev/speaking/docs-devs-love/

