Write Docs Devs Love
Ten Tricks to Level Up Your Tech Writing

Mason Egger
Lead Developer Advocate
Gretel
https://gretel.ai

@masonegger

@ mason.dev

https://twitter.com/masonegger
https://mason.dev
https://gretel.ai/

What is Tech Writing?

o Think of that feeling you get when you follow an online
tutorial or piece of documentation and the code works
on the first run.

o Now think of all the hours spent wasted following
broken, outdated, or incomplete documentation.

o What is the difference? What made one good and the
other bad?

o Technical Writing is instructional or informative writing
that focuses on how to accomplish a task using a

specific tool
o These tools can be hardware, software, and everywhere in
between

@masonegger - Write Docs Devs Love

Why is Technical Writing Important?

o Usually the first impression someone has of your project
o Ifthey don't like it, they will leave and find another tool

o Teaches users about a new project/code they didn’t know

about
o When was the last time you found a new project just browsing

source code?
B A projects README is tech writing, so don’t count that.

o Teaches users how to use your project effectively and
safely
o Imagine if your vehicle manual said “Fill up the tire with air” instead
of “Fill up the tire with air to 35 psi”
o Helps build a community around your project
o Likely to bring people back

o People will want to contribute
o People will tell their friends about the project

@masonegger - Write Docs Devs Love

Mason’s Top 10 Trips for Improving

o Disclaimer: These are my Tips and Tricks

o This is what has helped me after spending two years writing
tutorials and working with professional editors at DigitalOcean

o Just because something didn’t make it on this list doesn’t make it
invalid

o Picking just 10 was tough

@masonegger - Write Docs Devs Love

Tip #10 - Make Your End Goal Clear

o Have a clear, concise goal in your documentation in the
first paragraph
o This library allows you to do X
o In this tutorial you’ll use X and Y to build Z

o If you’re writing a tutorial, don’t spend 1000 words telling

your reader how great the technology is.

o They already know this, that’s why they are reading your tutorial.
o The reader wants to get something done

o Make it blatantly obvious what your reader will have
learned, built, accomplished, understood, etc. by the end
of reading the documentation

@masonegger - Write Docs Devs Love

Write Edit

Hemingway

Editor

Tip #9 - Don’t Be Overly Verbose

Readability

. . . Grade 6
o Technical documentation should be concise, not a novel Good
o If you want to write a tech novel, go for it. They are hilarious Words: 133

Show More v

o SAT words are not needed here
o Always assume the readers of your documentation don’t speak
the same language as you

o Aim for a low reading level
o Tools like Grammerly and https://hemingwayapp.com/ will give
you the estimated grade level readability of your writing
B | aim for 3rd grade reading level. The highest | allow myself
to go is 6th

@masonegger - Write Docs Devs Love

https://hemingwayapp.com/

Tip #8 - Use Inclusive Language

o Avoid gendered language and go for more gender

neutral pronouns.

o Don’t be afraid to use second person.
B “Nextyou will”
o If you’re looking for second person plural, | love the word y’all

o Avoid using known internet slang that can be viewed as
derogatory
o Noobs, 10x Developers, Dummies
B “Top 10 Tips for JavaScript Noobs”
o Avoid words that can make someone question or doubt

their skills

o Whatis “simple” or “easy” to someone might be challenging to
someone else
B “Simply install Python from source”

@masonegger - Write Docs Devs Love

Tip #7 - Limit Technical Jargon

o Jargon - special words or expressions that are used by
a particular profession or group and are difficult for
others to understand.

o Overuse of Jargon can make it difficult for beginners to
grok your content

o See what | did there? Grok?
o Knowing your audience will help you decide how much

jargon you can use

o Are you writing internal documentation for your team? Probably
can use some jargon related to the system

o Assume beginners if you don’t know your audience
o Beginners will appreciate you and experts will skim over it

o You can also have a statement stating who your documentation is

for
@masonegger - Write Docs Devs Love

Tip #6 - Define ALL Acronyms

©)

©)

O

O

O

@masonegger

Tech has way too many acronyms
o We even have some acronyms that can mean two different things

Acronyms can easily scare away readers

o New learners often feel insecure and intimidated by Tech
B Acronyms feed this fear

Write out the full name of the acronym when you first

introduce it
O “You'll need to add a record to the Domain Name System, DNS, to ...”

If you plan to use the acronym for the rest of the

documentation, say so

O “You'll need to add a record to the Domain Name System, DNS, to ... We’ll
refer to the Domain Name System as DNS for the remainder of this tutorial”

Define all acronyms used in the tutorial at the beginning
or end and link back to them when you use them

- Write Docs Devs Love

Tip #5 - Avoid Memes/ldioms and Regional

Language
o Avoid using memes and idioms unless you are positive

who your audience is
o lIdioms - a group of words established by usage as having a
meaning not deducible from those of the individual words
B “Pull out all the stops”
B “Piece of cake”
B “Costs and arm and a leg”
o Your 6 coworkers will probably understand these, a global
audience of people who might have never seen Spongebob
might not

o Avoid using regional language that might confuse native

and non-native speakers
o “Performing this command will totally trash your system”
o “Don’t use this library, it’s dodgy”

@masonegger - Write Docs Devs Love

Tip #4 - Use Meaningful Code Samples and

Variable Names

o Use examples of real problems your code can solve
o Readers want to know what problems your code solves, show them
o Very often readers just skip to code, if you have good examples they
may get their entire answer from a single code block
o Use meaningful variable names
o We all say “Code should be self documenting”, well the documentation
should be as well
o Foo and Bar are useless. They need to go
o Include everything that is needed to run the code
o This includes things like import statements

o Always have a completed copy of the code for copy/pasting

o If you have a tutorial where you walk the user step by step with little
code blocks, have one large codeblock at the end with the complete
code

@masonegger - Write Docs Devs Love

Tip #3 - Don’t Make Your Reader Leave

Your Docs

o Avoid sending your reader to many other sites/links
o Everything necessary to complete task should be in your article
o Copying a few steps from another set of documentation is better
than sending the user to many different sites

o If you are going to make your reader leave your article,

have a reason and a way to bring them back
o Do it at the beginning
o Have a list of prerequisites at the very beginning that need to be
completed before doing the tutorial.
o Link out to these and direct the reader where to learn/accomplish the
prerequisite
o Don’tjust say “Go install Python”. Give them a tutorial that sets them
up for success and tell them to come back when they have finished
B This also allows you to control and write for that specific
environment

@masonegger - Write Docs Devs Love

Tip #2 - Make Your Content Scannable

o Make it easy for the reader to find a single piece of

information
o Beginners tend to read entire posts while experienced users will
scan for the information that they need

o Use Headings and SubHeadings to break up content
o OQOutline big changes such as a next step or change of context

o When paired with a Table of Contents it lets users find what they

are looking for much easier

o Use consistent style when writing
o Ex: Make all library names bold and all file paths in italics
o The user will quickly pick up on this style and it will make the
content more scannable
o Consistency is key!

@masonegger - Write Docs Devs Love

Tip #1 - Verify Your Instructions! Test, Test,

Test!

o Always verify your instructions and test your work
o The only thing worse than no documentation is incorrect
documentation
o If possible, someone else test your work also
o Having and editor, peer, teammate, or friend work through the
documentation can help you find lapses
o Use a fresh environment for your testing

o Attempt to remove all bias from your development environment.
Your shortcuts, packages, and tools might not be on your readers
workstation

@masonegger - Write Docs Devs Love

Bonus Tip! - Practice, Practice, Practice

o The best way to get better at technical writing is to write

o Set aside a set amount of time daily/weekly to just write
o You don’t have to publish it.

o Don’tthrow it away. Save it in a folder. You never know when you
might want to dust it off

@masonegger - Write Docs Devs Love

How You Can Get Started in Technical
Writing
o Write documentation at work
o There is always something to be documented
o Start a blog
o The best part about a blog is it can be freer. You can write
tutorials and blog posts
o Great for practicing
o Contribute to Open Source Projects
o Many Open Source Projects need help with documentation

o Hacktoberfest is a great place to start
B [t's where | started

@masonegger - Write Docs Devs Love

That’s all for this time!

o Follow me on Twitter @masonegger
o Scan the barcode or go to grtl.ai/europython2022 for
some free swag!
o Slides can be found on my website
mason.dev/speaking/docs-devs-love

https://twitter.com/masonegger
https://grtl.ai/europython2022
https://mason.dev/speaking/docs-devs-love/

